更新時(shí)間:2022-02-18 05:48:14作者:admin2
解答:解:(1)設(shè)等差數(shù)列{an}的公差為d,則∴a1+a3+a5=21,a2+a4+a6=27,∴3a3=21,3a4=27,∴a3=7,a4=9,∴d=2,∴an=a3+2(n-3)=2n+1,∴a1=3,∴4Sn=3bn-3,①n=1時(shí),4S1=3b1-3,∴b1=-3,n≥2時(shí),4Sn-1=3bn-1-3②,∴①-②整理得bn=-3bn-1,∴數(shù)列{bn}是以-3為首項(xiàng),-3為公比的等比數(shù)列,∴bn=(-3)n;(2)cn=4bn+1bn-1=4+5(-3)n-1,n為奇數(shù)時(shí),cn=4-53n+1,∵3n+1≥4,(n=1時(shí)取等號(hào))∴114≤4-53n+1<4,n為偶數(shù)時(shí),cn=4+53n-1,∵3n-1≥8,(n=2時(shí)取等號(hào))∴4<4+53n-1≤378,綜上,114≤cn≤378,cn≠4,∴cn=4bn+1bn-1的最小值114,最大值是378.