更新時間:2021-04-20 18:15:29作者:網(wǎng)絡(luò)
??(1)祖沖之在數(shù)學上的杰出成就,是關(guān)于圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".后來發(fā)現(xiàn)古率誤差太大,圓周率應是"圓徑一而周三有余",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術(shù)",用圓內(nèi)接正多邊形的周長來逼近圓周長.劉徽計算到圓內(nèi)接96邊形,求得π=3。
??14,并指出,內(nèi)接正多邊形的邊數(shù)越多,所求得的π值越精確.祖沖之在前人成就的基礎(chǔ)上,經(jīng)過刻苦鉆研,反復演算,求出π在3。1415926與3。1415927之間.并得出了π分數(shù)形式的近似值,取為約率 ,取為密率,其中取六位小數(shù)是3。141929,它是分子分母在1000以內(nèi)最接近π值的分數(shù).祖沖之究竟用什么方法得出這一結(jié)果,現(xiàn)在無從考查.若設(shè)想他按劉徽的"割圓術(shù)"方法去求的話,就要計算到圓內(nèi)接16,384邊形,這需要化費多少時間和付出多么巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數(shù)學家獲得同樣結(jié)果,已是一千多年以后的事了.為了紀念祖沖之的杰出貢獻,有些外國數(shù)學史家建議把π=叫做"祖率".
(2)七歲時高斯進了 St。
??Catherine小學。大約在十歲時,老師在算數(shù)課上出了一道難題:「把 1到 100的整數(shù)寫下來,然后把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。
??這個難題當然難不倒學過算數(shù)級數(shù)的人,但這些孩子才剛開始學算數(shù)呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鐘,高斯已經(jīng)把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數(shù)字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。
??考完后,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最后,高斯的石板被翻了過來,只見上面只有一個數(shù)字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數(shù)目,所以答案是 50×101=5050。
??由此可見高斯找到了算術(shù)級數(shù)的對稱性,然后就像求得一般算術(shù)級數(shù)合的過程一樣,把數(shù)目一對對地湊在一起。