亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問每日一練:不能判定兩直線平行的條件是!

每日一練:不能判定兩直線平行的條件是

更新時間:2024-01-12 12:58:46作者:貝語網(wǎng)校

不能判定兩直線平行的條件是

A.同位角相等.

B.內(nèi)錯角相等.

C.同旁內(nèi)角相等.

D.都和第三條直線平行.

試題答案

C

試題解析

判定兩直線平行目前有兩種方法:①平行公理的推論.②平行線的判定公理,和兩個平行線的判定定理.本題解答時應(yīng)緊扣這四個判定法.

為您推薦

數(shù)學(xué)考題練習(xí):下面四個命題中,正確的一個是

下面四個命題中,正確的一個是A.平分一條弦的直徑必垂直于這條弦B.平分一條弧的直線垂直于這條弧所對的弦C.圓心角相等,圓心角所對的弧相等D.在一個圓中,平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心

2024-01-12 12:59

數(shù)學(xué)考題練習(xí):在平面直角坐標(biāo)系中有兩點A(7,3),B(7,

在平面直角坐標(biāo)系中有兩點A(7,3),B(7,0),以點(1,0)為位似中心,位似比為1:3.把線段AB縮小成A′B′,則過A點對應(yīng)點A′的反比例函數(shù)的解析式為________.

2024-01-12 12:59

數(shù)學(xué)考題練習(xí):直線y=kx+b經(jīng)過A(2,1),B(-1,-

直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點,求關(guān)于x的不等式kx+b≤0的解集.

2024-01-12 12:59

數(shù)學(xué)考題練習(xí):已知,那么的值為

已知,那么的值為A.±B.±1C.±D.±

2024-01-12 12:59

數(shù)學(xué)考題練習(xí):甲安裝隊為A小區(qū)安裝66臺空調(diào),已安裝隊為B小

甲安裝隊為A小區(qū)安裝66臺空調(diào),已安裝隊為B小區(qū)安裝60臺空調(diào),兩隊同時開工且恰好同時完工,甲隊比乙隊每天多安裝2臺,若設(shè)乙隊每天安裝x臺,則下面所列方程中,正確的是A.=B.=C.=D.=

2024-01-12 12:59

數(shù)學(xué)考題練習(xí):一次函數(shù)y=ax+b的圖象經(jīng)過點A,點B,如圖

一次函數(shù)y=ax+b的圖象經(jīng)過點A,點B,如圖所示,則不等式ax+b>0的解集是A.x<-2B.x>-2C.x<1D.x>1

2024-01-12 12:59

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |