亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數(shù)學(xué)考題練習(xí):已知a,b,c是直角三角形的三邊,且c為斜邊,!

數(shù)學(xué)考題練習(xí):已知a,b,c是直角三角形的三邊,且c為斜邊,

更新時(shí)間:2024-01-12 16:40:07作者:貝語(yǔ)網(wǎng)校

已知a,b,c是直角三角形的三邊,且c為斜邊,h為斜邊上的高,下列說(shuō)法中正確的結(jié)論的個(gè)數(shù)是

①,,能組成三角形;②c+h,a+b,h能組成直角三角形;③a2,b2,c2能組成一個(gè)三角形;④,,能組成直角三角形.

A.1

B.2

C.3

D.4

試題答案

C

試題解析

根據(jù)勾股定理的逆定理和三角形的三邊關(guān)系進(jìn)行逐個(gè)分析即可.

解答:①∵(+)2=a+b+2,()2=c,

又∵a+b>c,

∴(+)2>()2,

∴,即本項(xiàng)說(shuō)法正確;

②因?yàn)椋╟+h)2-h2=c2+2ch,ch=ab(直角三角形面積=兩直角邊乘積的一半=斜邊和斜邊上的高乘積的一半)

∴2ch=2ab,

∵(a+b)2=a2+b2+2ab,

∴c2=a2+b2,

所以本項(xiàng)說(shuō)法正確;

③a2+b2=c2,根據(jù)兩邊之和得大于第三邊,故本項(xiàng)說(shuō)法錯(cuò)誤;

④因?yàn)?,所以本項(xiàng)說(shuō)法正確.

所以說(shuō)法正確的有3個(gè).

故選C.

點(diǎn)評(píng):本題主要考查直角三角形的性質(zhì),勾股定理的逆定理,三角形的三邊關(guān)系,關(guān)鍵在于熟練運(yùn)用勾股定理的逆定理,認(rèn)真的進(jìn)行計(jì)算.

為您推薦

數(shù)學(xué)考題練習(xí):下列四個(gè)幾何體的三視圖是同一個(gè)圖形的是

下列四個(gè)幾何體的三視圖是同一個(gè)圖形的是A.B.C.D.

2024-01-12 16:40

數(shù)學(xué)考題練習(xí):如圖,AB是⊙O的直徑,弦CD垂直平分OB,則

如圖,AB是⊙O的直徑,弦CD垂直平分OB,則∠BAC等于A.15°B.20°C.30°D.45°

2024-01-12 16:40

數(shù)學(xué)考題練習(xí):下列關(guān)于x的方程一定有實(shí)數(shù)解的是

下列關(guān)于x的方程一定有實(shí)數(shù)解的是A.x2+ax+1=0B.C.D.x2+ax-1=0

2024-01-12 16:40

數(shù)學(xué)考題練習(xí):以下有四個(gè)結(jié)論:①順次連接對(duì)角線相等的四邊形各

以下有四個(gè)結(jié)論:①順次連接對(duì)角線相等的四邊形各邊中點(diǎn),所得的四邊形是菱形;②等邊三角形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;③頂點(diǎn)在圓上的角叫做圓周角;④邊數(shù)相同的正多邊形都是相似形.其中正確的有A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

2024-01-12 16:40

數(shù)學(xué)考題練習(xí):已知m2+m-1=0,那么代數(shù)式m3+2m2-

已知m2+m-1=0,那么代數(shù)式m3+2m2-2001的值是A.2000B.-2000C.2001D.-2001

2024-01-12 16:40

數(shù)學(xué)考題練習(xí):若-(-a)為正數(shù),則a為

若-(-a)為正數(shù),則a為A.正數(shù)B.負(fù)數(shù)C.0D.不能確定

2024-01-12 16:40

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |