亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數(shù)學考題練習:如圖,梯形ABCD中,AD∥BC,AB=AD,!

數(shù)學考題練習:如圖,梯形ABCD中,AD∥BC,AB=AD,

更新時間:2024-01-12 16:43:00作者:貝語網(wǎng)校

如圖,梯形ABCD中,AD∥BC,AB=AD,AE平分∠BAD,交BC于E.

(1)求證:四邊形ABED是菱形;

(2)若∠ABC=60°,BC=3AD,求證:∠CDE=90°.

試題答案

解:(1)∵AD∥BC,

∴∠2=∠3,

∵AE是角平分線,

∴∠1=∠2,

∴∠1=∠2=∠3,

∴AD=AB=BE,且AD∥BE,

∴四邊形ABED是平行四邊形,

又∵AB=BE,

∴四邊形ABED是菱形;

(2)作DF∥AE,交BC于點F,

由(1)知,△ABE是正三角形,

∴∠EDF=∠AED=∠1=60°,

又∵BC=3AD,

∴EF=DF=FC,

∴∠CDF=∠EFD=30°,

∴∠CDE=90°.

試題解析

(1)首先由AD∥BC與AE是角平分線,易證得:AD=AB=BE,且AD∥BE,即可證得:四邊形ABED是平行四邊形,繼而證得:四邊形ABED是菱形;

(2)首先作輔助線:作DF∥AE,交BC于點F,由△ABC是正三角形,求得:∠EDF=∠AED=∠1=60°,又由BC=3AD,易得EF=DF=FC,則可證:∠CDE=90°.

點評:此題考查了平行線的性質(zhì),角平分線的定義,菱形的判定以及直角三角形的判定等知識.題目綜合性較強,但難度適中,注意數(shù)形結(jié)合思想的應用.

為您推薦

數(shù)學考題練習:如圖,用n表示等邊三角形邊上的小圓圈,f(n)

如圖,用n表示等邊三角形邊上的小圓圈,f(n)表示這個三角形中小圓圈的總數(shù),那么f(n)和n的關系是A.f(n)=n2+nB.f(n)=n2-n+1C.f(n)=(n2+n)D.f(n)=n2

2024-01-12 16:43

數(shù)學考題練習:如圖,AB是⊙O的直徑,CD是弦,CD⊥AB,

如圖,AB是⊙O的直徑,CD是弦,CD⊥AB,垂足為E,則下列結(jié)論不一定成立的是A.CE=DEB.OE=BEC.=D.=

2024-01-12 16:43

數(shù)學考題練習:已知x≥y,當a≤0時,下列不等式成立的是

已知x≥y,當a≤0時,下列不等式成立的是A.-ax>-ayB.ax≤ayC.ax≥ayD.-ax≤-ay

2024-01-12 16:43

數(shù)學考題練習:正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象

正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象上一個交點是(-2,1),那么它們的另一個交點是________.

2024-01-12 16:42

數(shù)學考題練習:若a<0,b>0,a+b<0,現(xiàn)給出下列三個數(shù)

若a<0,b>0,a+b<0,現(xiàn)給出下列三個數(shù):-|a+b|、-|a-b|、|b|-|a|,其中與a+b相等的數(shù)的個數(shù)是A.3B.2C.1D.0

2024-01-12 16:42

數(shù)學考題練習:在下列正方體的表面展開圖中,剪掉1個正方形(陰

在下列正方體的表面展開圖中,剪掉1個正方形(陰影部分),剩余5個正方形組成中心對稱圖形的是A.B.C.D.

2024-01-12 16:42

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |