亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數學考題練習:如圖,梯形ABCD中,AD∥BC,AD=AB,!

數學考題練習:如圖,梯形ABCD中,AD∥BC,AD=AB,

更新時間:2024-01-12 16:47:44作者:貝語網校

如圖,梯形ABCD中,AD∥BC,AD=AB,BD=BC,∠A=120°,則∠C=

A.60°

B.70°

C.75°

D.80°

試題答案

C

試題解析

根據等腰三角形的兩個底角相等和三角形的內角和定理,得∠ABD=∠ADB=30°;根據平行線的性質,得∠DBC=∠ADB=30°,再根據等腰三角形的兩個底角相等和三角形的內角和定理進行求解.

解答:∵AD=AB,∠A=120°,

∴∠ABD=∠ADB=30°.

∵AD∥BC,

∴∠DBC=∠ADB=30°.

∵BD=BC,

∴∠C=∠BDC=75°.

故選C.

點評:此題考查了等腰三角形的性質、平行線的性質以及三角形的內角和定理.

為您推薦

數學考題練習:一個均勻的小立方體的6個面上分別標有數字,任意

一個均勻的小立方體的6個面上分別標有數字,任意擲出這個小立方體,若P(“1”朝上)=,則這個小立方體的6個面上分別標有的數字可以是A.1,2,3,4,5,6B.1,1,3,3,5,5C.1,2,2,3,6,6D.1,2,1,3,1,4

2024-01-12 16:47

數學考題練習:如圖,四邊形ABCD是平行四邊形,∠D=120

如圖,四邊形ABCD是平行四邊形,∠D=120°,∠CAD=32°,則∠ABC、∠CAB的度數分別為A.28°,120°B.120°,28°C.32°,120°D.120°,32°

2024-01-12 16:47

數學考題練習:解下列不等式(組),并把解集用數軸表示出來:(

解下列不等式(組),并把解集用數軸表示出來:(1)5(x-2)>8x-4;(2).

2024-01-12 16:47

數學考題練習:若a、b為有理數,且,則ab的值為

若a、b為有理數,且,則ab的值為A.B.C.D.2

2024-01-12 16:47

數學考題練習:如圖,某運動員P從半圓跑道的A點出發沿勻速前進

如圖,某運動員P從半圓跑道的A點出發沿勻速前進到達終點B,若以時間t為自變量,扇形OAP的面積S為函數的圖象大致是A.B.C.D.

2024-01-12 16:47

數學考題練習:如圖,O是邊長為6的等邊三角形ABC內的任意一

如圖,O是邊長為6的等邊三角形ABC內的任意一點,且OD∥BC,交AB于點D,OF∥AB,交AC于F,OE∥AC,交BC于E.則OD+OE+OF的值A.3B.4C.5D.6

2024-01-12 16:47

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |