更新時間:2024-01-12 16:25:24作者:貝語網(wǎng)校
如圖,矩形ABCD中,E為BC上一點,DF⊥AE于F.
(1)△ABE與△ADF相似嗎?請說明理由.
(2)若AB=6,AD=12,BE=8,求DF的長.
解:(1)△ABE與△ADF相似.理由如下:
∵四邊形ABCD為矩形,DF⊥AE,
∴∠ABE=∠AFD=90°,
∠AEB=∠DAF,
∴△ABE∽△DFA.
(2)∵△ABE∽△ADF
∴=,
∵在Rt△ABE中,AB=6,BE=8,
∴AE=10
∴DF===7.2.
答:DF的長為7.2.
(1)根據(jù)矩形的性質和DF⊥AE,可得∠ABE=∠AFD=90°,∠AEB=∠DAF,即可證明△ABE∽△DFA.
(2)利用△ABE∽△ADF,得=,再利用勾股定理,求出AE的長,然后將已知數(shù)值代入即可求出DF的長.
點評:此題主要考查學生對相似三角形的判定與性質、勾股定理和矩形的性質的理解和掌握,難度不大,屬于基礎題.