亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數學考題練習:若A(),B(),C()為二次函數y=x2+4!

數學考題練習:若A(),B(),C()為二次函數y=x2+4

更新時間:2024-01-12 16:35:18作者:貝語網校

若A(),B(),C()為二次函數y=x2+4x-5的圖象上三點,則y1,y2,y3的大小關系為________<________<________.

試題答案

y2    y1    y3

試題解析

此題可根據給出的二次函數判斷開口方向向上,對稱軸為直線x=-2,再比較圖象上三點到對稱軸的距離,則距離越大,其縱坐標越大.

解答:對二次函數y=x2+4x-5,a=1>0,開口向上,對稱軸為直線x=-2.

又A、B、C三點到對稱軸的距離分別為|--(-2)|=,|--(-2)|=,|-(-2)|=,

∴y2<y1<y3,

故答案是:y2、y1、y3

點評:本題考查了二次函數的性質,重點是判斷函數的對稱軸,由點到對稱軸的距離比較出各點縱坐標的大?。?/p>

為您推薦

數學考題練習:如圖在Rt△ABC中,∠C=90°,AC=5,

如圖在Rt△ABC中,∠C=90°,AC=5,AB=13,則tanB=________.

2024-01-12 16:35

數學考題練習:下列說法或計算正確的是

下列說法或計算正確的是A.在將分式方程化為整式方程時,可將方程兩邊同時乘以x(x-1)B.函數中,自變量x的取值范圍是x≥5C.與不是同類二次根式D.(3-sin30°)0=0

2024-01-12 16:35

數學考題練習:下列4個點,不在反比例函數y=-圖象上的是

下列4個點,不在反比例函數y=-圖象上的是A.(2,-3)B.(-3,2)C.(3,-2)D.(3,2)

2024-01-12 16:35

數學考題練習:以方程組的解為坐標的點(x,y)在平面直角坐標

以方程組的解為坐標的點(x,y)在平面直角坐標系中的位置是A.第一象限B.第二象限C.第三象限D.第四象限

2024-01-12 16:35

數學考題練習:下表給出的是關于一次函數y=kx+b的自變量x

下表給出的是關于一次函數y=kx+b的自變量x及其對應的函數值y的若干信息:則根據表格中的相關數據可以計算得到m的值是x…-101…y…01m….A.0B.1C.2D.3

2024-01-12 16:35

數學考題練習:如圖,兩個邊長相等的正方形ABCD和OEFG,

如圖,兩個邊長相等的正方形ABCD和OEFG,若將正方形OEFG繞點O按逆時針方向旋轉150°,則兩個正方形的重疊部分四邊形OMCN的面積A.不變B.先增大再減小C.先減小再增大D.不斷增大

2024-01-12 16:35

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |