更新時(shí)間:2024-01-12 16:38:32作者:貝語網(wǎng)校
在△ABC中,AB邊的垂直平分線交BC于點(diǎn)D,垂足為點(diǎn)F,AC邊的垂直平分線交BC于點(diǎn)E,垂足為點(diǎn)G.
(1)當(dāng)∠BAC=100°時(shí),求∠DAE=________°;
(2)當(dāng)∠BAC為鈍角時(shí),猜想∠DAE與∠BAC的關(guān)系:________.
解:(1)∵DF垂直平分AB,
∴AD=AB,
∴∠BAD=∠B,
又EG垂直平分AC,
∴AE=CE,
∴∠EAC=∠C,
由∠BAC=100°,得到∠B+∠C=80°,
∴∠BAD+∠CAE=80°,
則∠DAE=∠BAC-(∠BAD+∠CAE)=100°-80°=20°;
(2)∵DF垂直平分AB,
∴AD=AB,
∴∠BAD=∠B,
又EG垂直平分AC,
∴AE=CE,
∴∠EAC=∠C,
∵∠B+∠C=180°-∠BAC,
∴∠BAD+∠CAE=∠B+∠C=180°-∠BAC,
則∠DAE=∠BAC-(∠BAD+∠CAE)
=∠BAC-(∠B+∠C)
=∠BAC-(180°-∠BAC)
=2(∠BAC-90°).
故答案為:20°;∠DAE=2(∠BAC-90°)
(1)由DF垂直平分AB,EG垂直平分AC,根據(jù)線段垂直平分線的性質(zhì),分別得到AD與BD相等,AE與CE相等,然后再利用等邊對(duì)等角分別得到∠BAD與∠B相等,∠EAC與∠C相等,由∠BAC的度數(shù),利用三角形的內(nèi)角和定理求出∠B+∠C,利用∠BAC減去∠BAD與∠EAC的和,等量代換即可求出值;
(2)根據(jù)第一問的思路,同理可表示出∠DAE與∠BAC的關(guān)系.
點(diǎn)評(píng):此題考查了線段垂直平分線的性質(zhì),屬于探究型題,此題的一般解法是充分抓住已知條件或圖形的特征,找準(zhǔn)問題的突破口,由淺入深,多角度,多側(cè)面探尋,聯(lián)想符合題設(shè)的有關(guān)知識(shí),合理組合發(fā)現(xiàn)新結(jié)論.讓學(xué)生經(jīng)歷了由特殊到一般的推理過程,培養(yǎng)了學(xué)生的發(fā)散思維能力.