亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問(wèn)數(shù)學(xué)考題練習(xí):如圖所示,△ABC與△BDE都是等邊三角形,A!

數(shù)學(xué)考題練習(xí):如圖所示,△ABC與△BDE都是等邊三角形,A

更新時(shí)間:2024-01-12 16:43:48作者:貝語(yǔ)網(wǎng)校

如圖所示,△ABC與△BDE都是等邊三角形,AB<BD.若△ABC不動(dòng),將△BDE繞點(diǎn)B旋轉(zhuǎn),則在旋轉(zhuǎn)過(guò)程中,AE與CD的大小關(guān)系為

A.AE=CD

B.AE>CD

C.AE<CD

D.無(wú)法確定

試題答案

A

試題解析

本題可通過(guò)證△ABE和△CBD全等,來(lái)得出AE=CD的結(jié)論.兩三角形中,已知了AB=BC、BE=BD,因此關(guān)鍵是證得∠ABE=∠CBD;由于△ABC和△BED都是等邊三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得證.

解答:∵△ABC與△BDE都是等邊三角形,

∴AB=BC,BE=BD,∠ABC=∠EBD=60°;

∴∠ABE=∠CBD=120°;

∴△ABE≌△CBD;

∴AE=CD.

故選A.

點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),當(dāng)出現(xiàn)兩個(gè)等邊三角形時(shí),一般要利用等邊三角形的邊和角從中找到一對(duì)全等三角形.

為您推薦

數(shù)學(xué)考題練習(xí):如圖,已知拋物線與x軸分別交于A、B兩點(diǎn),頂點(diǎn)

如圖,已知拋物線與x軸分別交于A、B兩點(diǎn),頂點(diǎn)為M.將拋物線l1沿x軸翻折后再向左平移得到拋物線l2.若拋物線l2過(guò)點(diǎn)B,與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為N,則四邊形AMCN的面積為A.32B.16C.50D.40

2024-01-12 16:43

數(shù)學(xué)考題練習(xí):一個(gè)圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑為6的半圓,則此

一個(gè)圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑為6的半圓,則此圓錐的底面半徑是A.6B.3C.2D.

2024-01-12 16:43

數(shù)學(xué)考題練習(xí):若“!”是一種數(shù)學(xué)運(yùn)算符號(hào),并且1!=1,2!

若“!”是一種數(shù)學(xué)運(yùn)算符號(hào),并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,則的值為_(kāi)_______.

2024-01-12 16:43

數(shù)學(xué)考題練習(xí):如圖,G是邊長(zhǎng)為4的正方形ABCD邊上一點(diǎn),矩

如圖,G是邊長(zhǎng)為4的正方形ABCD邊上一點(diǎn),矩形DEFG的邊EF經(jīng)過(guò)點(diǎn)A,已知GD=5,則FG為_(kāi)_______.

2024-01-12 16:43

數(shù)學(xué)考題練習(xí):不等式1-2x<6的負(fù)整數(shù)解是________

不等式1-2x<6的負(fù)整數(shù)解是________.

2024-01-12 16:43

數(shù)學(xué)考題練習(xí):一副三角板有6個(gè)角,這6個(gè)角中最小角的度數(shù)是

一副三角板有6個(gè)角,這6個(gè)角中最小角的度數(shù)是A.15°B.30°C.45°D.60°

2024-01-12 16:43

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |