更新時間:2024-01-12 16:26:50作者:貝語網校
在復習《反比例函數》一課時,同桌的小明和小芳有一個問題觀點不一致.小明認為如果兩次分別從1~6六個整數中任取一個數,第一個數作為點P(m,n)的橫坐標,第二個數作為點P(m,n)的縱坐標,則點P(m,n)在反比例函數的圖象上的概率一定大于在反比例函數的圖象上的概率,而小芳卻認為兩者的概率相同.你贊成誰的觀點?
(1)試用列表或畫樹狀圖的方法列舉出所有點P(m,n)的情形;
(2)分別求出點P(m,n)在兩個反比例函數的圖象上的概率,并說明誰的觀點正確.
解:(1)列表得:
第二個數 第一個數 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
(2)∴一共有36種可能的結果,且每種結果的出現可能性相同,
點(3,4),(4,3),(2,6),(6,2)在反比例函數y=的圖象上,
點(2,3),(3,2),(1,6),(6,1)在反比例函數y=的圖象上.
∴點P(m,n)在兩個反比例函數的圖象上的概率都為:=,
∴小芳的觀點正確.
(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡單;解題時要注意是放回實驗還是不放回實驗,此題屬于放回實驗;
(2)依據(1)分析求得所有等可能的出現結果,然后根據概率公式求出該事件的概率.
點評:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.