亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數學考題練習:已知拋物線y=3ax2+2bx+c.(1)若a!

數學考題練習:已知拋物線y=3ax2+2bx+c.(1)若a

更新時間:2024-01-12 16:29:54作者:貝語網校

已知拋物線y=3ax2+2bx+c.

(1)若a=b=1,c=-1,求拋物線與x軸公共點的坐標;

(2)若a=b=1,且當-1<x<1時,拋物線與x軸有且只有一個公共點,求c的取值范圍.

試題答案

解:∵a=b=1,c=-1,

∴拋物線的解析式為y=3x2+2x-1,

令y=3x2+2x-1=0,解得:x=-1或,

∴拋物線與x軸的交點坐標為:(-1,0),(,0);

(2)∵a=b=1,

∴解析式為y=3x2+2x+c.

∵對稱軸x=-=-,

∵當-1<x<1時,拋物線與x軸有且只有一個公共點,

則①此公共點一定是頂點,

∴△=4-12c=0,

②一個交點的橫坐標小于等于-1,另一交點的橫坐標小于1而大于-1,

∴3-2+c≤0,3+2+c>0,

解得-5<c≤-1.

綜上所述,c的取值范圍是:c=或-5<c≤-1.

試題解析

(1)將a、b、c的值代入拋物線后求得解析式,令y=0求出x的值就是交點坐標的橫坐標;

(2)根據其在此范圍內有一個交點,此時將兩個值代入,分別大于零和小于零,進而求出相應的取值范圍.

點評:本題考查了求二次函數的解析式等相關的知識,同時還滲透了分類討論的數學思想,是一道不錯的二次函數綜合題.

主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |