亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數(shù)學(xué)考題練習(xí):已知二次函數(shù)y=-2x2+4x+6.(1)求出!

數(shù)學(xué)考題練習(xí):已知二次函數(shù)y=-2x2+4x+6.(1)求出

更新時間:2024-01-12 16:39:51作者:貝語網(wǎng)校

已知二次函數(shù)y=-2x2+4x+6.

(1)求出該函數(shù)圖象的頂點坐標,對稱軸,圖象與x軸、y軸的交點坐標,并在下面的坐標系中畫出這個函數(shù)的大致圖象;

(2)利用函數(shù)圖象寫出:當(dāng)y>0時x的取值范圍?

試題答案

解:(1)∵y=-2x2+4x+6=-2(x-1)2+8=-2(x+1)(x-3),

∴拋物線的頂點坐標為(1,8),對稱軸為直線x=1

與x軸交點為(-1,0),(3,0)

與y軸交點為(0,6),圖象如下:

(2)由圖象可知,當(dāng)-1<x<3時,y>0.

試題解析

(1)將二次函數(shù)y=-2x2+4x+6=-2(x-1)2+8=-2(x+1)(x-3),根據(jù)頂點式可確定對稱軸及頂點坐標,根據(jù)一般式可確定拋物線與y軸的交點,根據(jù)交點式可確定拋物線與x軸的交點;

(2)根據(jù)圖象與x軸的交點坐標,可確定y>0時,x的取值范圍.

點評:本題考查了拋物線的開口方向、對稱軸、頂點坐標與拋物線解析式的關(guān)系,拋物線的頂點式:y=a(x-h)2+k,頂點坐標為(h,k),對稱軸x=h.同時考查了用拋物線與x軸的交點坐標,判斷函數(shù)值的符號的方法.

為您推薦

數(shù)學(xué)考題練習(xí):如圖,已知直線經(jīng)過點A(4,3),與y軸交于點

如圖,已知直線經(jīng)過點A(4,3),與y軸交于點B.(1)求B點坐標;(2)若點C是x軸上一動點,當(dāng)AC+BC的值最小時,求C點坐標.

2024-01-12 16:39

數(shù)學(xué)考題練習(xí):如圖是一個由四個同心圓構(gòu)成的靶子示意圖,點O為

如圖是一個由四個同心圓構(gòu)成的靶子示意圖,點O為圓心,且OA=AB=BC=CD=5,那么周長是接近100的圓是A.OA為半徑的圓B.OB為半徑的圓C.OC為半徑的圓D.OD為半徑的圓

2024-01-12 16:39

數(shù)學(xué)考題練習(xí):∠AOB=90°,ON平分∠BOC,OM平分∠

∠AOB=90°,ON平分∠BOC,OM平分∠AOC.(1)如圖1,若∠BOC=30°,求∠MON的度數(shù);(2)如圖2,將OC向下旋轉(zhuǎn),使∠BOC=2x°,其他條件不變,求∠MON的度數(shù);(3)如圖3,將OC向上旋轉(zhuǎn),使OC在∠AOB的內(nèi)部

2024-01-12 16:39

數(shù)學(xué)考題練習(xí):有一個角是________的平行四邊形叫做矩形

有一個角是________的平行四邊形叫做矩形.

2024-01-12 16:39

數(shù)學(xué)考題練習(xí):若點P(a,b)的坐標滿足關(guān)系式ab>0,則點

若點P(a,b)的坐標滿足關(guān)系式ab>0,則點P在A.第一象限B.第三象限C.第一、三象限D(zhuǎn).第二、四象限

2024-01-12 16:39

數(shù)學(xué)考題練習(xí):如果點A(2,6)在函數(shù)y=kx的圖象上,下列

如果點A(2,6)在函數(shù)y=kx的圖象上,下列所表示的各點在這個函數(shù)圖象上的是A.(-1,-2)B.(-2,6)C.(1,3)D.(3,-9)

2024-01-12 16:39

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |