亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數學考題練習:如圖,相等兩圓交于A、B兩點,過B任作一直線交!

數學考題練習:如圖,相等兩圓交于A、B兩點,過B任作一直線交

更新時間:2024-01-12 16:40:16作者:貝語網校

如圖,相等兩圓交于A、B兩點,過B任作一直線交兩圓于M、N,過M、N各引所在圓的切線相交于C,則四邊形AMCN有下面關系成立

A.有內切圓無外接圓

B.有外接圓無內切圓

C.既有內切圓,也有外接圓

D.以上情況都不對

試題答案

B

試題解析

根據切線長定理,四邊形有內切圓時,四邊形的對邊之和相等.根據圓的內接四邊形的性質可以得到,四邊形如果有外接圓,四邊形的對角和應為180°.

解答:解:如圖:

因為⊙O1與⊙O2是等圓,所以相交的兩段相等,

則:∠AMN=∠ANM,

∴AM=AN.

連接O1M,O1C,O2N,O2C,

∵CM,CN分別是兩圓的切線,

∴∠O1MC=∠O2NC=90°,

在直角△O1MC和直角△O2NC中,

O1M=O2N,∠MO1C<∠NO2C,

∴MC>NC

∴AM+NC≠AN+MC,

所以四邊形AMCN沒有內切圓.

連接AB,則∠CMN=∠MAB,∠CNM=∠NAB,

在△AMN中,∠AMN+∠ANM+∠MAN=180°,

∴∠CMN+∠CNM+∠AMN+∠ANM=180°,

即:∠AMC+∠ANC=180°,

所以四邊形AMCN有外接圓.

故選B.

點評:本題考查的是圓與圓的位置關系,根據兩等圓相交得到AM=AN,再由切線的性質得到直角三角形,在直角三角形中判斷CM,CN的大小,得到四邊形的對邊的和不等,確定四邊形沒有內切圓.根據弦切角定理和三角形的內角和得到四邊形的對角互補,確定四邊形有外接圓.

主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |