亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數學考題練習:函數中自變量的取值范圍是!

數學考題練習:函數中自變量的取值范圍是

更新時間:2024-01-12 16:45:37作者:貝語網校

函數中自變量的取值范圍是

A.x≠2

B.x≤2

C.x>2且x≠3

D.x≥2且x≠3

試題答案

D

試題解析

根據二次根式的性質,被開方數大于或等于0,零指數冪的定義可以求出x的范圍.

解答:根據題意得:x-2≥0且x-3≠0,

解得:x≥2且x≠3.

故選D.

點評:考查了函數自變量的取值范圍和零指數冪的定義,函數自變量的范圍一般從三個方面考慮:

(1)當函數表達式是整式時,自變量可取全體實數;

(2)當函數表達式是分式時,考慮分式的分母不能為0;

(3)當函數表達式是二次根式時,被開方數非負.

為您推薦

數學考題練習:如圖,梯形ABCD中,AD∥BC,∠D=90°

如圖,梯形ABCD中,AD∥BC,∠D=90°,以AB為直徑的⊙O與CD相切于E,與BC相交于F,若AB=8,AD=2,則圖中兩陰影部分面積之和為A.3B.C.D.

2024-01-12 16:45

數學考題練習:如圖,兩平面鏡所成的∠1,一束光線由是P發出,

如圖,兩平面鏡所成的∠1,一束光線由是P發出,經平面鏡OB,OA兩次反射后回到點P,已知PQ∥OA,PR∥OB,則∠1的度數為A.30°B.45°C.60°D.75°

2024-01-12 16:45

數學考題練習:如圖,直角梯形ABCD中,AB⊥BC,AD∥B

如圖,直角梯形ABCD中,AB⊥BC,AD∥BC,點E是AB的中點,AD+BC=CD,下列結論中:①△ADE∽△BEC;②DE2=DADC;③若設AD=a,CD=b,BC=C,則關于x的方程ax2+bx+c=0有兩個不相等的實數根;④若設A

2024-01-12 16:45

數學考題練習:分式的自變量x的取值范圍是

分式的自變量x的取值范圍是A.x≠1B.x≠0C.x≠2D.x≠3

2024-01-12 16:45

數學考題練習:互不相等的三個正數a、b、c恰為一個三角形的三

互不相等的三個正數a、b、c恰為一個三角形的三條邊長,則以下列三數為長度的線段一定能構成三角形的是A.B.a2,b2,c2C.D.|a-b|,|b-c|,|c-a|

2024-01-12 16:45

數學考題練習:把方程中分母化整數,其結果應為

把方程中分母化整數,其結果應為A.B.0C.D.0

2024-01-12 16:45

加載中...
主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |