亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數(shù)學考題練習:△ABC內(nèi)有一點P,過P作△ABC三邊的平行線!

數(shù)學考題練習:△ABC內(nèi)有一點P,過P作△ABC三邊的平行線

更新時間:2024-01-12 16:37:37作者:貝語網(wǎng)校

△ABC內(nèi)有一點P,過P作△ABC三邊的平行線MN∥BC,IJ∥CA,EF∥AB,其中F,J在BC邊上,E,N在CA邊上,I,M在AB邊上.并且三個平行四邊形AEPI,BFPM,CNPJ的面積分別為S1,S2,S3,那么△ABC的面積為________(用S1,S2,S3的式子表示)

試題答案

試題解析

利用△ABC∽△AMN∽△IBJ∽△EFC∽△OFJ∽△EPN∽△IMP,及其相似比,求得S△ABC、S△AMN,令S△PFJ=a2,S△EPN=b2,S△DCP=c2,a,b,c>0,則S△AMN=(b+c)2,S△IBJ=(c+a)2,S△EFC=(a+b)2,分別求出(用S1,S2,S3的式子表示)a、b、c,然后即可解題.

解答:

∵△ABC∽△AMN∽△IBJ∽△EFC∽△OFJ∽△EPN∽△IMP,

∴相似比為BC:MN:BJ:FC:FJ:PN:MP.

∵BC=FJ+PN+MP,MN=MP+PN,BJ=BF+FJ,F(xiàn)C=FJ+PN,

∴S△ABC=S=.

S△AMN=,

令S△PFJ=a2,S△EPN=b2,S△DCP=c2,a,b,c>0,

則S△AMN=(b+c)2,S△IBJ=(c+a)2,S△EFC=(a+b)2

S?AEPI=S1=2bc,S?BFPM=S2=2ca,

由S?CNPJ=S3=2ab可推出=2abc,

a=,b=,c=推出S=(a+b+c)2

=

=.

故填:.

點評:此題主要考查學生對相似三角形的理解和掌握,此外還涉及到了三角形面積,平行四邊形面積,步驟繁瑣,稍有疏忽,導致整個題錯誤,因此屬于難題.

主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |