亚洲男人天堂av,国产一区二区久久精品,国产精品一区二区久久精品,国产精品久久久久久一区二区三区,五月婷婷在线观看视频,亚洲狠狠色丁香婷婷综合

歡迎您訪問數(shù)學考題練習:如圖,圓內接四邊形ABCD,AB=AD,∠BA!

數(shù)學考題練習:如圖,圓內接四邊形ABCD,AB=AD,∠BA

更新時間:2024-01-12 16:37:43作者:貝語網(wǎng)校

如圖,圓內接四邊形ABCD,AB=AD,∠BAD=60°,AC=2,則四邊形ABCD的面積為

A.4

B.2

C.

D.

試題答案

D

試題解析

連接BD,在AC上取CE=CD,連接DE,作AF⊥BC,交BC延長線于F,作AG⊥DC,交CD于G,先證明△ABD是等邊三角形,再證明△CDE同樣是等邊三角形,可得BC+CD=AC=2,在構造的直角三角形中利用三角函數(shù)分別求出△ABC和△ACD的高,根據(jù)四邊形ABCD的面積=S△ABC+S△ACD即可求解.

解答:解:連接BD,

∵∠BAD=60°,AB=AD,

∴△ABD是等邊三角形.

在AC上取CE=CD,連接DE,

∵∠ECD=∠ABD=60°,

∴△CDE同樣是等邊三角形,

∴CE=CD=DE,BD=AD,∠ADE=∠ADB-∠EDB,∠BDC=∠EDC-∠EDB,

∴∠ADE=∠BDC,

∴△ADE≌△BDC,

∴AE=BC,

∴BC+CD=AC=2

作AF⊥BC,交BC延長線于F,作AG⊥DC,交CD于G,

∠ACB=∠ADB=60°(同弧圓周角相等)

AF=ACsin60°=×2=

同理,AG=ACsin60°=,

四邊形ABCD的面積=S△ABC+S△ACD=BC•AF+AG•CD=×(BC+CD)=AC=.

故選D.

點評:本題難度比較大,其中涉及了多步輔助線的作法.分析題意正確地作出輔助線是解題的關鍵.其中在AC上取CE=CD,連接DE,構造等邊三角形是個難點.求出BC+CD=AC=2是求四邊形面積的關鍵步驟.

主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |